

Excavation support

Complete solutions covering all ground engineering technologies

 $Geotechnical \ solutions \ for \ the \ construction \ industry$

STMANN RELLE

119

RUN.

A

A NOT AND AND A

 ALL PARTY

* 1

B

-

KELLER

ACK AND ID

Ima

ALL CONTRACTOR

111111111

page 2

Overview

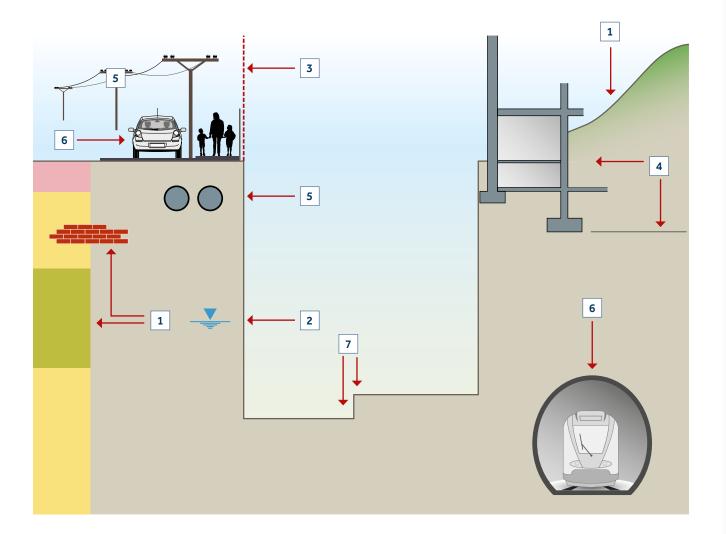
The unique character of each project and the underlying site conditions mean that customised solutions in the planning and construction of excavation support are essential. As a full-service provider, Keller is able to offer solutions perfectly tailored to the requirements of any project.

Keller can provide suitable solutions for many soil conditions and technical requirements in connection with excavation support. Our extensive geotechnical expertise accumulated over the years enables us to provide cost-efficient solutions, especially on complex shoring systems.

The variety of systems we are able to offer allows us to respond flexibly to a variety of boundary conditions. We are committed to maintaining the highest quality and environmental standards, which are deeply rooted in our company philosophy.

Our engineers are constantly pushing the boundaries of our high-performance products, and we make extensive use of the most advanced software to ensure our designs are the best they can be to suit your project.

Health and safety


Health and safety is a priority for Keller and we have a proven track record of one of the lowest accident frequency rates in our industry. The commitment of leaders and employees to our Think Safe programme has earned us awards and recognition from industry bodies as well as our clients.

We believe no one should be harmed as a result of any work we do and our ultimate goal is zero incidents.

When designing and constructing excavation support, we work to complex boundary conditions and performance requirements, whilst considering how to make the best use of the land available.

Requirements

- Minimum impact on existing building structures
- No disturbance to day-to-day operations
- Optimum use of plot space and facilities
- Integration of foundation system into the overall structure
- Minimum deflection even for deep excavation support
- Compliance with environmental standards, noise, dust- and vibration regulations
- Efficient use of natural resources
- Extensive monitoring and verification through measurement, with detailed records
- Close cooperation between owner, designer and foundation specialist

1. Soil conditions

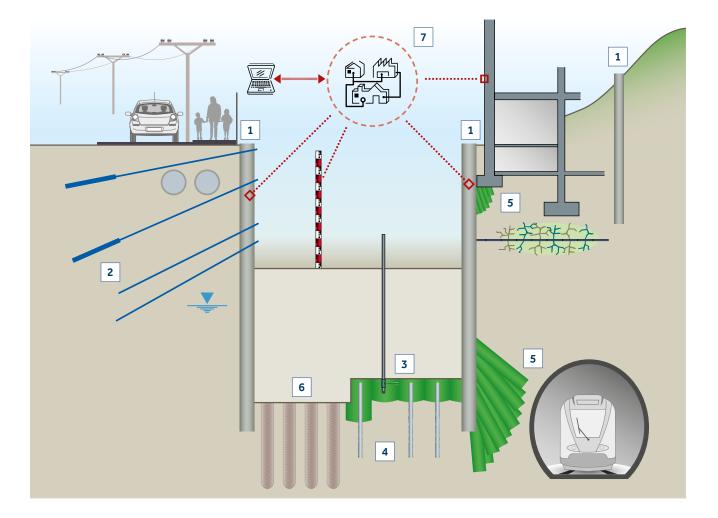
- Difficult soil conditions (stratigraphy, obstructions, existing slopes etc) require careful design and planning to select an appropriate solution.
- 2. Groundwater Protection of groundwater against pollution and prevention of water ingress into the excavation pits.
- 3. Plot boundaries Plots and existing rights of way require particular care when planning the building site and during construction.

4. Existing buildings

Damage to adjacent buildings as a result of the work being conducted must be avoided. In particular, the serviceability of the existing building foundations must not be compromised. This often requires additional support and underpinning to secure them. 5. Underground services Underground services such as sewage and water pipes, power lines and communication cables must remain in service, especially in densely populated areas such as city centres.

6. Traffic

Traffic flow should be impeded as little as possible and existing traffic infrastructure needs to be protected against damage.


7. Varying excavation depths

Some projects require excavation depths to vary across the site, for which a range of tailored solutions may be required.

LER

Keller offers flexible solutions and specialist techniques to solve even highly complex excavation support problems. Working to industry leading quality and environmental standards is an integral part of our philosophy.

Solutions

- Complete package: A full range of methods for the construction of excavation support to suit your job
- Custom-made solutions designed in our in-house Engineering Centre
- Low-vibration and ecologically sustainable construction
- Use of environmentally compatible materials
- Continuous monitoring
- Flexible response to unexpected problems
- Direct communication between client and Keller
- Extensive knowledge from more than 150 years' experience in ground engineering

1. Pit walls

- Bored pile walls
- Diaphragm walls
- Sheet pile walls
- Berlin type pit lining
- Shotcrete
- Soil mixing method (DSM)
- Jet grouting method (including Soilcrete[®] wall/ underpinning)
- Combined solutions (eg bored piles and Soilcrete®)
- 2. Groundwater
- Anchors
- Soil nails
- Steel and concrete reinforcements

3. Base slabs

- Jet grouting method (Soilcrete[®])
- Soft-gel chemical grout
- Underwater concrete
- 4. Uplift control
- Micropiles

5. Base slabs

- Jet grouting method (Soilcrete[®])
- Soilfrac[®] curtain

6. Foundations

- Bored pile walls
- Piles
- Diaphragm wall barrettes
- Full range of soil improvement methods
- Jet grouting method (Soilcrete[®])
- Deep soil mixing method (DSM)

7. Measurement

- Monitoring
- Control
- Documentation

KELLEP page 7

Glücksteinquartier Mannheim, Germany

In a major development project for the city of Mannheim, Keller Grundbau constructed the 'No. 1 Excavation Pit' in the southern part of the inner city. The site covered an area of around 6,000m² with an average depth of 5.50m. Keller constructed a pedestrian ramp (interpile sheeting with shotcrete infill) and excavation pit shoring with bored pile walls and anchors, as well as completing earth excavation and demolition work and soil improvement.

15-SQUESH-BADMINTON

Schultheiss-Quartier Berlin, Germany

Centered around the historic Schultheiss Brewery, a new shopping and service centre was built in the Berlin district of Moabit. Together with Bauer Spezialtiefbau, Keller Grundbau constructed the complete excavation pit.

Our services included the demolition of ten building complexes including removal of demolition material and excavation of pits covering 4,600m² and 7,100m². Additionally, implementing a shoring system: 7,000m2 of mixed-in-place walls, 2,650m² of Soilcrete[®] walls, 700mm² of bored pile walls, uplift tension and shoring anchors. We installed a 11,600m² silicate gel sealing barrier, managed the excavation of 95,000m³ earth and dealt with groundwater drainage through gravity wells and groundwater cleaning systems.

14

KELLER

Discovery Basement Sandton, Johannesburg, South Africa

Keller company Franki Africa carried out a mammoth 550,000m³ excavation and 15,540m² lateral support basement for Discovery's new head office. Geotechnical investigations of the site revealed a very complex diabase dyke along most of one of the boundaries and a deeper weathering of the granite bedrock in the area surrounding the intrusion. This resulted in the provision of additional anchor force, and reduction in the rock excavation and blasting requirements. The biggest challenge was the doubling of the anchor forces required to provide satisfactory stability to the excavation face, and limiting the movements of the sites surrounding the excavated area.

'he Yacht Club Cape Peninsula, Jouth Africa

he Yacht Club development is a prestigious nulti-use commercial and residential space n the Malmesbury group deposition of the lape Peninsula in Cape Town's Foreshore.

Fround conditions on the site included shale bedrock overlain by very stiff residual material ollowed by marine deposits and fill made up of old harbour facilities, rubble and dredged sands.

An existing sub-surface canal running south to north and intersecting the eastern portion of the site required special attention. Keller expertise was utilised to design a modified lateral support and piled foundation solution to accommodate and maintain the integrity of the structure.

On this multi-storey, double-basement project, Keller company Franki Africa designed and installed 271 foundation piles, lateral support at 508lm as well as the disposal of 65,000m³ bulk earthworks. VANE

a has bed and set at

Et al

Neuer Kanzlerplatz Bonn, Germany

Located in the heart of Bonn, the 'Neue Kanzlerplatz' is an attractive urban quarter consisting of modern office buildings and a hotel. The project comprised three pentagonal buildings including a 100m-tall high-rise structure and a three-storey underground car park.

Keller Grundbau constructed the complete excavation pit covering an area of 20,000m², with a depth of up to 12m. Our services included 6,000m² of diaphragm walls; 2,000m² of secant bored pile walls; 7,000m of anchors; steel reinforcements and 130,000m³ of excavated material.

Warburgstraße Hamburg, Germany

In a high-class residential area in Hamburg, Keller Grondbau constructed a complete excavation pit for a new eight-storey residential building with three underground floors. The position of the building site in a cul-de-sac immediately adjacent to the American consulate presented a major challenge from a logistics point of view. Our services included the preservation of the historic facade dating back to 1872; explosive ordnance exploration; excavation confinement with bored pile walls (2,900m²); steel reinforcement; 8,000m³ of excavation; water management with expansion boreholes, as well as residual and day water containment under geologically challenging ground conditions.

....

E

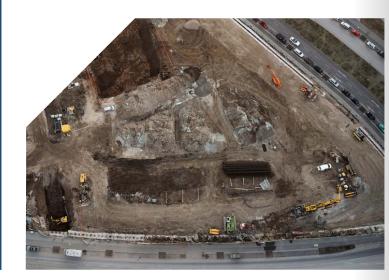
- 111

Shopping centre, Tamaraceite Canary Islands, Spain

Keller Cimentaciones was awarded excavation and retaining structure design and construction work for a large shopping centre. The cohesionless soil and close proximity of a road, meant that a 180m-long pile wall braced with ground anchors was required.

ld Mutual nnesburg,

ca completed work d Mutual building; a challenges, including , the presence of ig directly under the an adjoining


a challenging n and 'expected' over its tunnel Rivonia Road face. in this region. The lled deeper than /er this area.

soldier piles at , 12,500m² of gunite if 600kN and 750kN rock-bolts varying The total excavation e 380,000m³, of d rock.

Hafenparkquartier Frankfurt, Germany

The 'Hafenparkquartier' project is under development in Frankfurt within close vicinity of the river Main, besides the European Central Bank.

Keller Grundbau was awarded the contract to construct the 10m-deep excavation pit on an area of 15,000m² – including related earthworks and dewatering system. The scope of works comprises the construction of an 18m-deep secant bored pile wall with two rows of retaining anchors. In part of the area, permanent micropiles are installed to prevent flotation. Foundation piles with a diameter of 1.5m will be constructed beneath the high-rise buildings.

141 Harley Street London, United Kingdom

Design and construction of restricted access mini piles to form a 73 linear metre secant pile wall, a 35 linear metre contiguous pile wall and load bearing piles in low headroom conditions to allow the excavation of a three-storey basement in central London to accommodate a new proton beam therapy facility.

Amongst the challenges overcome by Keller UK were strict noise restrictions, materials transport times, reduced headroom under the temporary props, close vicinity of the pile foundation to neighbouring buildings and tight tolerances in position and verticality.

Works performed: 117 hard piles up to 22m-deep 508/450mm using case and auger methods and 117 7m-deep soft piles using SFA methods sealed into London clay.

Muharraq Sewage Treatment Plant (STP), Bahrain

The Muharraq STP involved the construction of gravity sewer and network connections comprising 47 shafts, one intermediate lifting station (ILS) and one terminal lifting station (TLS). Keller's scope included eight shafts and one ILS varying in diameter and depths. Keller constructed 0.9m diameter secant piles to a maximum depth of 22.5m to allow the deep shaft excavation works to proceed in dry conditions. Double walled steel casings were used to case the entire length of the secant piles ensuring the required verticality that subsequently produced adequate secant between adjacent piles that is essential to prevent water seepage.

LKH – Universitätsklinikum Graz, Austria

Keller Grundbau's scope of work for this prestigious project in the Steiermark state of Austria was divided into two phases:

The slope protection for the emergency access constructed with a continuous flight auger (CFA) pile wall (630mm diameter/8m average length) using 20cm-thick shotcrete infill.

And the 25m-deep excavation pit support executed in two sequences via a lower and upper pile wall. The upper wall installed twothree metres from the lower, using the same piling method as for the emergency access works but with CFA piles up to 20m deep.

KOSTMANN

KOSTMANN

1

U · U

KELLER

.....

 -

0

The Royal Castle Warsaw, Poland

HH

The construction of the double-floor machine chamber 10m below the courtyard of the 18th-century palace was highly restricted by the presence of historic structures in the subsoil, giving the excavation pit a complex layout. The design and build of the excavation support system was done by Keller Polska and was successful in protecting adjacent buildings. Lateral displacement of the palace wall not exceeding 4mm.

HH

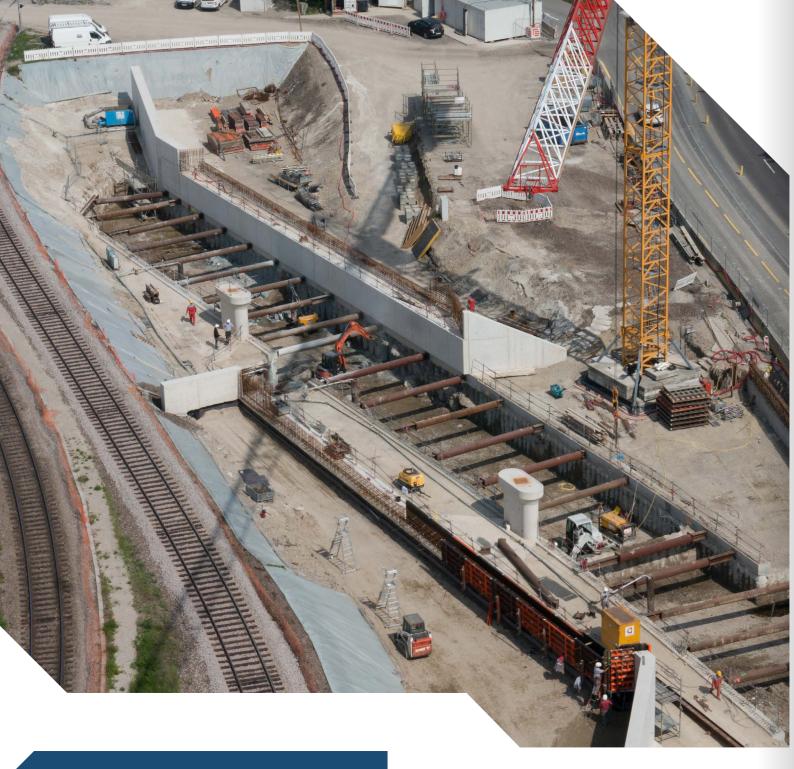
H

The palace is built on ground with two-eight metrethick uncontrolled deposits underlain by fine sands and Pliocene clay, with a groundwater level to depths of twosix metres.

A temporary retaining wall was built using a row of deep soil mixing columns, each 0.7m in diameter and 14.5m long, spaced at 0.55m. A steel beam was installed in every second column to provide the required wall strength. The wall was anchored with two - three rows of pre-stressed anchors each 18m long.

Maraton Poznań, Poland

KETTEB


KELLER

Maraton is a mixed-use building in the heart of the city, surrounded by both business and commercial venues and historical and cultural landmarks.

Keller Polska constructed a perimeter excavation support using 3,900m² of d-wall which also limited the groundwater inflow. In addition, horizontal steel strutting has been installed with a total weight of 305 tons.

KELLE

KELLER

Trémie du Port Autonome de Strasbourg, France

The extension of the Strasbourg tramway line D needed to pass under an existing railway line, so an underground passage was constructed below the groundwater table.

Keller Fondations Spéciales installed 620mmdiameter secant piles and a 1,200m2 injected slab (1,000mm thick, cement grout and silica mix) as temporary cut-off during civil works.

Santa Luzia Chapel Allard, São Paulo, Brazil

One of the focus of this challenging project was to preserve the century-old chapel during the construction of the Cidade Mattarazzo multi-purpose project in the center of the city. For the construction of the eight-story carpark, the chapel was fully suspended on bored concrete piles, within a pit excavation reaching 31m deep. The perimeter retaining structures consisted of d-walls, barrettes as well as bored piles and anchored shotcrete walls.

Keller Tecnogeo collaborated with Geofix on this large project with a complex scope of geotechnical works. The challenging project was delivered to strict time constraints an exacting standards.

Tunnel under The Dead Vistula, Gdańsk, Poland

The project involved construction of of (up to) 22m-deep and 1,090m-long excavation pits for tunnel ramps and two Tunnel Boring Machines chambers. The team worked with high groundwater levels and challenging ground conditions at the Vistula River estuary, characterised by an alternating presence of sands and soft organic silt. The client adopted Keller's design proposal to move from working underwater to a dry operation to cut construction time and reduce costs. Anchored soilcrete plugs were used in TBM chambers to ensure structural stability and water-tightness - a unique approach.

The scope of work included 66,400m² d-walls, 42,000m³ jet grouting, 60,000m micropiles, 1,500m³ reinforced concrete, and the installation of 3,000 tons steel structures.

KELLER

18

 \cap

051

KELLER

.....

Keller Group Plc

Geotechnical specialist contractor www.keller.com

1000-09E_19